\

VA\
/) \

/

e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

a
\

/,//' A\

/,

y i
=\
(

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

2

OF

3

A

OF

Downloaded from rsta.royalsocietypublishing.org

TRANSé(FZTIONS SOCIETY

PHILOSOPHICAL THE ROYAL

Dynamic Properties of Resilient Materials: Constitutive
Equations

J. E. Adkins

Phil. Trans. R. Soc. Lond. A 1958 250, 519-541
doi: 10.1098/rsta.1958.0006

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand
corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1958 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;250/985/519&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/250/985/519.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

[ 519 ]

DYNAMIC PROPERTIES OF RESILIENT MATERIALS:
CONSTITUTIVE EQUATIONS
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Constitutive equations are formulated for a class of resilient materials for which the stress distribu-
tion at any instant is assumed to depend both upon the deformation and upon the time rates of
variation of the tensors defining it. Particular attention is given to aeolotropic bodies, the stress
deformation relations for orthotropic and transversely isotropic materials being put in forms
which exhibit the symmetry properties of the material. In the discussion of symmetry properties,
attention is confined to the case where the stress tensor is a polynomial function of two only of
the kinematic tensors. ,

Convected co-ordinate systems are employed in the development of the theory, but the method
of transformation of the equations to a fixed frame of reference is also given. The modifications
which are required for materials exhibiting curvilinear aeolotropy are briefly indicated, and some
discussion is included of the manner in which certain types of geometrical constraint can be
accounted for in the stress-deformation relations.

1. INTRODUCTION

Much recent work in continuum mechanics has been concentrated on the derivation of
constitutive equations in closed form for materials, for which the mechanical properties
may be described by means of relations between the quantities which describe the state of
stress and the deformation and their time rates of variation. For example, Truesdell
(1955 a, b, ¢) has developed relations for hypo-elastic materials by starting from the concept
of rate of stress as a function of stress and rate of deformation and restricting the form of his
equations by dimensional analysis. The connexion of this theory with the theory of finite
elastic deformation has been examined by Noll (1955) and its relation to some of the
classical theories of plasticity has been discussed by Green (19564, 5). Rivlin & Ericksen
(1955) on the other hand, have considered materials for which the stress may be con-
sidered as a general function of the space derivatives of the displacement, velocity and
successive accelerations, and have shown that these assumptions lead to a representation of
the stress in terms of a series of kinematic tensors. By making use of the properties of

1 Now at the University of Nottingham.
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520 J. E. ADKINS ON THE

symmetric matrices, the constitutive equations for isotropic bodies may then be reduced to
closed form. This procedure, however, leaves possible indeterminacies in the representation,
a difficulty which Rivlin avoids in subsequent work (1955, 1956) by assuming the stress to
be expressible as a polynomial in two only of the kinematic tensors.

For problems involving plastic flow or the motion of fluids, it is usually the situation at
a point of space which is of interest. A fixed Euclidean frame of reference is then employed,
and when time derivatives of the stress or deformation enter into the constitutive equations
these must be formed in a manner which gives the right invariance properties. The laws of
formation of such time derivatives have been given in general form by Oldroyd (1950) and
special cases have been discussed from several points of view by Truesdell (1955 4), Rivlin
& Ericksen (1955) and by Cotter & Rivlin (1955). Alternatively, the situation in a given
element of the material throughout the motion may be considered, by referring all equa-
tions to a convected co-ordinate system which is associated with points of the body and
moves with it as it is deformed. This method has also been discussed by Oldroyd, and has
been used in the solution of problems by Lodge (1951). ’

In the work of Rivlin & Ericksen (1955) and of Rivlin (1955) attention has been con-
centrated on isotropic bodies. When the strain tensor appears explicitly in the constitutive
equations there is a preferred initial configuration and aeolotropic properties may arise.
Materials of this type are considered in the present paper, it being assumed that the stresss
depends both upon the deformation and upon the time rates of variation of the quantities
defining it. Such materials are here described as ‘resilient’ to distinguish them from the
bodies considered in the static theory of finite elastic deformation in which rate of strain
effects are ignored in the formulation of mechanical properties. Physically, the equations
might be expected to give a description of dynamic hysteresis, a phenomenon which occurs
in rubber-like materials.

It is therefore assumed that the mechanical properties of a homogeneous (rectilinearly)
aeolotropic body may be described by means of an expression for the stress tensor, in terms
of kinematic tensors which specify the deformation and its successive time rates of variation,
these tensors being referred to a convected co-ordinate system which coincides, in the un-
deformed body at rest at time ¢ = 0, with a fixed rectangular Cartesian frame of reference.
Asin the theory of elasticity, the general equations may be modified to indicate the existence
of symmetries in the material. An exhaustive study of the forms appropriate to a general
range of crystal classes could probably be made by making use of classical invariant theory
(see, for example, Turnbull 1928; Weyl 1939). In the present paper an independent treat-
ment is given of two cases of common interest, orthotropy and transverse isotropy. To avoid
possible indeterminacies in the representation it is assumed that the mechanical properties
can be represented by an expression for the stress tensor, as a polynomial in the tensors
defining the deformation and its first time rate of variation. The equations for the ortho-
tropic case follow directly from a consideration of the products of the kinematic tensors,
which remain invariant in form under the required transformation of co-ordinates. For
transversely isotropic bodies, a reduction of the equations to closed form may be achieved
by making use of the Hamilton—Cayley theorem and the generalizations of this theorem for
3 X 3 matrices given by Rivlin (1955). As a result of this reduction, the elements of the stress
tensor are expressed as polynomials in the elements of the kinematic tensors. The relations
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DYNAMIC PROPERTIES OF RESILIENT MATERIALS 521

for transversely isotropic bodies lead naturally to a formula for the isotropic case, and the
relation of this result to other forms is discussed.

An indication is given of the modifications required for curvilinearly aeolotropic bodies;
the influence of certain types of geometrical constraint upon the form of the constitutive
equations is also examined briefly. Finally, a summary is given of the method of trans-
formation of the equations to a fixed frame of reference.

2. NOTATION AND FORMULAE

The approach of the present paper using convected co-ordinate systems corresponds in
many respects to that employed by Oldroyd (1950), Green (19564) and other workers,
but some detailed changes in notation are necessary for convenience in the subsequent
analysis.

A system of convected curvilinear co-ordinates ¢ is associated with elements of the
material and moves with the body as it is deformed. The covariant and contravariant
metric tensors for this system at an initial time ¢ = 0 are y;; = ¥;;(6", 0) and y¥ = y¥(0", 0)
and at time ¢ these become I;; = I';;(07, £), I'V = I'¥(¢", ¢), respectively. If ds,, ds are corre-
sponding elements of length at time £ = 0 and at the current time ¢, respectively, we derive
from a consideration of the expression

ds?—ds2 = (T;—7,,) d6'de, (21)
the definition o =30y (2-2)

for the covariant strain tensor 7,;, and by differentiation the formula

(2:3)

for the covariant rate of strain tensor a;, D/D¢ denoting differentiation with respect to ¢
holding the convected co-ordinates ¢/ constant. Higher rate of strain tensors off may be

obtained if required by successive differentiation. Thus

( y _ Dy 1DTy
Y Dyt Dr 2 Dr

(r=2,3,4,...). (2-4)

Mixed and contravariant kinematic tensors may be formed in several ways according to
the choice of metric.. In the present paper we shall employ the metric tensors )%, y,; to raise
and lower affixes, and write

=" g 17 =" = Ve
with corresponding expressions for the remaining kinematic tensors.
We denote by 77 the contravariant stress tensor, by f%, Fi the acceleration and body force

vectors, respectively, and by p the density, all referred to the convected reference frame
¢ at time ¢. The equations of motion then take the form

T4+ pF = pf’, (2-5)

the comma signifying covariant differentiation with respect to the variables ¢ and the

metric tensors I';; and I'Y.
65-2
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Following the approach adopted by the writer (1956) for elastic systems, we introduce
further convected reference frames V¢ (r = 1, 2, 3, ...) for the specification of non-isotropic
properties. With each of these systems may be associated kinematic and mechanical tensors
iy Oy, Oy, Qo) O, OF1 Ofi which are strictly analogous to the corresponding
unnumbered quantities for the co-ordinate system ¢, and may be related to them in the
usual manner by tensor transformations. For example

® a6t oo
Mii = Ao 3o Time

v 090G
We denote by & a convected co-ordinate system which coincides at time ¢ = 0 with a rect-
angular Cartesian reference frame X in the undeformed body; the stress, strain and rate of
strain tensors which correspond to the quantities 77, 7;, ;; in the system ¢ are then denoted
by 4, ¢;, a;, respectively. With this choice of co-ordinates, the metric tensors y;;, Y7 reduce
to Kronecker deltas and the contravariant, mixed and covariant components of the
kinematic tensors are equal; in any subsequent expressions involving these quantities, the
most convenient of the equivalent forms
will therefore be employed; the symbols E, A are used to represent the symmetric matrices
with elements ¢;;, a;;, respectively.

3. AEOLOTROPIC BODIES

For materials which possess a preferred initial configuration, it is evidently possible to
postulate aeolotropic properties and to relate these to the body at rest in that configuration.
We therefore consider a material which, at an initial time ¢ = 0 is unstressed and at rest,
the density p, being uniform in this initial state. In any subsequent continuously varying
deformation, the contravariant stress tensor £ is supposed to be expressible as a tensor
function ti = fii(e,, a,,) (31)
of the kinematic tensors ¢, a,,, the functions /% being symmetric polynomials in their
arguments. The material thus defined is initially homogeneous in the sense that a transla-
tion of the origin of the X’ reference frame (which determines the convected system x?)
leaves the form of (3-1) unchanged; aeolotropic properties arise since the form of # is, in
general, altered by an arbitrary rotation of the X’ co-ordinate axes.

We may here observe that in the case of elastic materials, the stress strain relations for
homogeneous aeolotropic bodies may be written

. 1 (W oW
i — 2—\/1(77;,;+?967)’ (3-2)
(see, for example, Green & Zerna 1954), where the strain energy function I is a function,

apart from constants, only of the components ¢,,, and where

I=]6,+2¢

s |-

Except for the factor I-%, which itself may be approximated by a polynomial expression in
¢,s, the formula (3-2) may be regarded as a special case of (3-1), and in this sense, the latter
definition may be considered to be a natural generalization of that commonly employed for
elastic bodies.
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Evidently any discussion of symmetry properties based on (3-1) may also be applied to
any definition in which the stresses ¥ are expressed as polynomial functions, which include,
in addition to the arguments ¢,,, a,,, non-vanishing invariant functions of these quantities,
such as 7%, which are not, in themselves, polynomials in the kinematic tensors. For any
such expression may be written

o= 3 405

where ¢, are non-vanishing invariant functions of the kinematic tensors, whilst /§ are again
symmetric polynomial functions of these quantities.

4. ORTHOTROPY

For materials of the type now being considered it is evidently possible to postulate
symmetry properties analogous to those occurring in ideally elastic bodies. We may, for
example, regard a material as being orthotropic if its mechanical properties at any point
are symmetrical when referred to the planes X?= constant (or a’ = constant) in the
undeformed body at rest at the initial time ¢ = 0. This implies that the stress tensor #/ when
expressed as a polynomial function

& :fij (ers’ apq) (4'1)
of the kinematic tensors e,,, a,, remains invariant in form under all transformations of the
pe (&, X7, X3) = (£ X, 2 X7, 4 X9).¢ (+2)

This condition may be expressed as

fij(ersa apq) =fz:i(érs’ d[zq)sv
where ¢, d,, are the transforms of ¢,, a,, obtained by means of (4-2).
To determine the form of # consider first the expression

Xij = Arst. e wow Dir g+ duvfsz 7 (4‘3)

where 4, ., 1s a constant tensor and the symbols b, ¢;; ... dy;, f;; ... are used, as required,

to represent the corresponding component of one or other of the kinematic tensors ¢, a;;
or else may be replaced by the Kronecker delta ;. The quantity y;; transforms as a Car-
tesian tensor product with respect to rotations of the axes X’. Under a transformation to

the system X, (4-3) yields
— Xt 0.X7
T Oy
09X 0XI (aXﬁ dX* ) (éb?l X _ ) (a"XnaX’ﬁ_ ) (an 0X - )
rst. ... uvw :

T XX oXH 7% ax o) g e ) -+ \Gxm g xe B anaXszﬂ

0XEJX 90X  9XrdXPoX?\ . _ '
= Arst. .. '“”w(ﬁX’ X 0X: " dX“dX? an) b/\kclm dnpﬁ;,u: (4'4)
the latter form being obtained by a suitable rearrangement of factors. For anyﬂ of the
transformations (4-2), each of the derivatives dX?/0X* occurring in (4-4) reduces to 44,

1 This evidently implies a corresponding transformation in the undeformed body of the convected system
x¢; in this and the following section we use X to indicate that the initial state is being considered.
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the sign of this factor depending upon which of the transformations X* = + X* for the given
value of £ is chosen. In order that the form of y; may remain unchanged, an even number
of negative signs must occur whichever of the transformations (4-2) is selected. This requires
that all components of the tensor 4,,, ., in which any given suffix occurs an odd number
of times shall be zero. It is sufficient for the present purpose to assume that successive
indices are restricted to have equal values in pairs and to write the product (4-3) as

Xz’j = A . uuvY lr Crp - uvf;)jﬁ (45)

summation being carried out over all repeated indices. This assumption implies that the

off-diagonal components 4,, A . w are zero. The expression
X;; may then be regarded as a sum of products
P bzrcrsd . luvmv;b (4‘6)

with each pair of successive indices equal. In this equation and subsequently throughout
the present section, unless otherwise indicated, the summation convention is no longer
employed. Each product (4-6) is evidently unchanged in form under all transformations
(4-2) ; in the sum y;; it is multiplied by the appropriate component of the tensor 4,,,
We observe that the assumption that successive indices are equal in the tensor 4,;, .,
gives no loss of generality. Any other pairing of equal indices would merely give rise to a
different order of factors in (4+6).

The product F; may be resolved into simpler factors by considering in detail the numerical
values which its 1ndlces can assume. Consider the case where ¢ and j are numerically
different. For r = ¢ and r = j, we have respectively »

P =¢ d luv mvj (bu) >

is st *

Pij = bij (cjs dst oo Zuvmvj) .

..o uvpt

(4:7)

If 7, j and r are all numerically different, the next index s must be equal to one of them; the

three possible cases yield
Fi=dy...l,m;b,c;) (s=1),

ij irri
‘sz - bzrcr_]<d . luvmvj) (5‘ :])’ (4'8)
Bj b ir drt luv mvj (crr) (S = 7) .

In (4-7) and (4'8) each bracketed group of factors constitutes a product of the type
H= bklclm dmnj;tp te hqk: (49)

in which each index is repeated and which does not contain the indices 7, j, whilst the
remaining terms constitute a product of the same type as F; but with fewer factors. More-
over, this reduction is always possible provided F; contams three or more factors. By a
repetition of the process it is therefore possible to reduce FP; to the form

P; = R;0, (4-10)
in which R;; contains either one or two factors
| Ry=b; or R;=byc, (i+r+j+i), (411)
whilst ® is a product of factors H of the type (4-9).
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These latter factors may be further reduced to products of more elementary basic types
by an extension of the foregoing process. Thus, if £ = /, (4:9) may be written

H = (bkk) . (ckmdmnf;lp ce hqk)'

If k<=1, but m is equal either to £ or [ we obtain the resolutions

H = (bycy) - (dinfup -+ bgr)  (m=Fk),
H=(c)). (blnTup - lgr)  (m=1).

If £, [ and m are all different, » must be numerically equal to one of them, and the three

possible cases then give
H = (b)) - (Jip -+ bg)  (n=k),
H= () (bufp---hy) (n=1),
H=(d,,) . bytimfup - bg) (n=m).

Again, this reduction is always possible provided that H contains more than three factors;
repetition of the process is sufficient to reduce H to a product of factors, each of which can

be derived from bycidy  (i%j+k =l=1) (412)
by suitably giving to the quantities b;;, ¢;;, d;; the values ¢;, a;; or J;.

A complete set of forms for the coefficients R;; (i1=j) is obtained by replacing b;;, ¢; in
(4-11) in all possible ways by the corresponding components of the kinematic tensors

E, A giving

e a

ij> ij>
Cirbrjs  QiyQyjs  Ciplyjs Uiy byj (4.13)

(¢=k7=Ej==1, r not summed).

Similarly, for the terms which can occur in the products H we derive from (4-12) the 21

quantities

(4

s Qi (i)

GiCis GG 65 s (ii)
i€y €35 Qg Apyy (iii)

(t==j=kk==1; 1, j, k not summed),

(4-14)

there being six terms each of types (i) and (iii) and nine of type (ii) obtained by giving
2, J, k all possible combinations of the values 1, 2, 3 subject to the stated restrictions. In
addition we have the products
C1a6p3es  and  ay,ap3a5),
which may, however, be expressed in terms of the scalar invariants tr E3 and tr A3, respec-
tively, together with the simpler combinations (4-14). For
3 3 3
trE3=3% 3 366,
i=14=1 k=1
_ = Beyy6p3¢5, + i) +edy +edy+ 3{ey (e +els) +enn(efy +eB3) +e55(efs +e35) ). (4°15)
The assumption that # is a polynomial in the kinematic tensors implies that it may be
expressed as a linear combination of terms

Xij T Xjis
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where x,; (= x¥) is given by (4-3). Each of these terms may be reduced by the foregoing
process to a sum of terms of the type (4-10) in which the coefficients R,; take the forms (4:13).
We note that for i = j any product may be resolved into factors of the types (4-14), (4-15)
alone. By collecting together terms with like coefficients R;; we obtain the formulae

% b
12 = 0,0y +a,, O3+ ;3630 Oy 41303, O5+¢13a3 Op+-¢935, O,

with similar expressions for the remaining components of stress. These may be written in
tensor form as

= §i0j 0,
+ erst erst 81 s{ers ®(D + ar& ®§2) + erl ets ®§:t” +‘ art als @ /4 + erl ats ®tt + est atr G)(G) (4. 1 7)

where summation is carried out over all repeated indices and ¢, is equal to +1 or —1
according as 7, s, ¢ is an even or odd permutation of 1, 2, 3 and is equal to 0 otherwise.
The functions @, ©,, % which occur in (4-16), (4-17) are of the same type as ©, and apart
from constant tensors which define the properties of the material contain the kinematic
tensors ¢,, a,, only in the combinations (4-14), (4:15). To preserve the symmetry of the
tensor #/, the forms of ®,, ®, must be such that interchange of the suffixes 1 and 2 in the
components of ¢, a,, occurring in them, must have the effect of transforming g into O,
and @, into @; similarly, the functions O, O must be such that they transform into each
other in the same way. In (4:17) the functions 0,, ®f (r = 1 to 5) are written as Cartesian
tensor functions of the kinematic tensors.

The components of stress 7/ referred to any other system of convected co-ordinates ¢ are
obtained in the usual manner by tensor transformations. This procedure yields

1] — (221. ,20_1 TS
 Ox"Ox*
= A% ®tt + erst erst Az {ers ®( P + ars ®§%) + ert ets @(3) ats ® + ert ats @ + est atr @(6) (4' 1 8)
| , 361 009
J — .
where A = = e (4-19)

Equation (4-18) reduces to the result derived by Green & Wilkes (1954) for elastic materials
if we omit all terms containing a; and write

1 oW %

_ 1w (.
o= 136, = Jra@y D,
1 aw
O = 08 = 08 = 5 7130, e000m)”

where the strain energy function W is a function only of the components ¢;;.

5. TRANSVERSELY ISOTROPIC MATERIALS

As in §4 we employ a definition of transverse isotropy analogous to that used in the
theory of elasticity. Thus a material is defined as being transversely isotropic with respect
to the -direction, if its mechanical properties, again referred to the #' co-ordinate system
in the undeformed body at rest, are symmetrical at each point about a line through that
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point parallel to the x!-axis (or the X'-axis with which it coincides), and about the plane

normal to it. This implies that the polynomial expression (4-1) for # is now form invariant

under all transformations of co-ordinates X?in the undeformed body of the type
X'=+4X, Xo=X%X2,X%) (¢=2,3), (5:1)

where X* is any arbitrary curvilinear system in the X2, X3-plane.

Evidently, #/ must be restricted in form to a sum of terms of the type (4-5), since all of
the transformations (4-2) are particular cases of (5-1). In addition, form invariance under
the latter, more general, transformation requires that the componentsof 4,,, obtained
by giving any one suffix the values 2, 3, respectively, must be equal. Thus

. 0o UV

AZth. couow A33!t. ..Uy Arr22 coouw Arr33 /1) ] Arrtt. ou22 T Arrll. .. u3ld° (52)

This result follows by considering the behaviour of y; under a general transformation of
the type (5-1). For, in the notation of § 4 we obtain from (4-5)

?—C/\,u = Arrl. .. uuv(gg) (%)(%) (gg%) z/\k_lm anfq,u' ' (5'3)

If now X’is an orthogonal Cartesian system which is obtained from the reference frame X
by a small arbitrary rotation about the X'-axis, we have

X
a—XE = 31'3 _grsa (5‘4)

where £, is an antisymmetric tensor given by

Er=E8r=81=0, &3 =—Em (5°5)

the non-zero components being small compared with unity. Neglecting the second and
higher orders of small quantities, from (5-3) and (5-4) we have

Xap = Ao, . uww b2y e Zuvj:),u — A il Ok Crt - Zuv];);t +&,03, 8- auvj:w
+EtbrrCrm - Ay oyt o b Ty o iy foy
'I'gpvzkrzrt oo ‘_lupj:m + gquhrzrt oo Euv.fq/t}‘ (5'6)
The second group of terms in this expression must evidently vanish if form invariance is to
be preserved. This implies that the coefficient of each product ,,%,... d,, f,, for any given

set of values of the indices 7,s, ... u,v,w which can occur in the second group of terms in
(5-6) must vanish separately. Remembering (5-5) we see that the coefficients of all products

barloy -8ty (¢...u,v not summed),

in which £... u,v can be given any of the values 1, 2 or 3, whilst L, M take the pairs of values
(1,1), (2,2), (3,3), (1,2), (2,1), (1, 3) and (3, 1), vanish identically. The remaining possible
pairs of values are (2, 3) and (3, 2), for which we obtain the terms

v ) (A33t. e uvv€23 +A22t. . e uvv£32) -5/\2231 e Zuv];),u&
and (Aoor. .. . uwbs2 33, . unbes) ZAs Cop+e Zuv];/u

respectively. For these expressions to vanish evidently requires that Agy, . 4 = 433, . 4o
A similar examination of the products which are obtained by giving successively to each

66 Vor. 250. A.
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pair of adjacent suffixes belonging to different factors of the expression _b’/\, Gt ovv By frop 2l
possible values, yields the remainder of the conditions (5-2).

These conditions have been derived by assuming the tensors b;;, ¢;;, ... to be distinct, so
that any given set of numerical values of 7, ¢, ..., u, v determines uniquely each product of
the set b,.¢,, ... d,, f,; obtained by giving 7, j the values 1, 2, 3. Since, however, each of the
symbols b, c;;, . can represent one of only two quantities, ¢; and a;;, it would appear feasible
thatin some cases two or more identical products could be obtamed by suitable permutations
of the indices, ¢, ..., u, v. The procedure of picking out coefficients of products b,,Z,, ... d,, f,,
in (5-6) with given numerical values of the indices 7,s,1,...,4,v,w would then yield, in
place of (5-2), a set of relations, in which several of the conditions (5-2) are replaced by a
smaller number of equations which are, however, linear combinations of the relations
derived by assuming the tensors bij» ¢;j, -.. to be distinct. Conditions relating individual
components of the tensor 4,,, . ,, are then replaced by relations between linear com-
binations of these components. An examination of a general expression of the type (5:6)
shows that the possibility of this type of non-unlqueness occurring does not affect the final
result; when interchangeability of the indices is taken into account, the components of the
tensor 4,,, ., Which occur grouped together in the conditions imposed by the symmetry
restrictions (5-1), occur also in the same combinations in the expansion of x;;. Suppose, for
example, that the structure of the product

Ap..qrs...tuv..wbz‘p cqrdrs f v'”le’T ‘
considered as a function of ¢,, a,, can be such that the indices r and « are interchangeable,

that
50 a bzp cqocdﬁ‘s f)t o l g = b fachﬂv wp

for all values of the suffixes ¢,, ..., ¢, 2, f,5, ..., £, 4, 4, v, ..., w, j. The procedure employed in
deriving the conditions (5-2) then yields

2Ap‘..q2s...120..w :Ap..q2s...t3v..w+Ap..q33...t2v..w'
=24

: .. p..é3s‘.‘..l3v..w’
1in place of the conditions

Ap Q2. 2. W T Ap. .q2s... 30, . w
p..q3s... B3v..w Ap. .q3s.. .20, w>
which would have been obtained by regarding the tensors b,,,¢,,, ...,1,; as distinct. In

either case the group of terms containing these coefficients may be reduced to

Ap ..g2s.. .20, .w{bip se cq2d23 . 'f;ZhZU l +2b d3 f h2v le
"I“bzp coe q3d3s o..ﬂshsv vee le}.

In subsequent discussions we may therefore assume the conditions (5-2) to be satisfied
uniquely. -

Considering again the first pair of indices of the tensor 4,,, ., we see that two cases
may arise: C g . .
Ay, cuw = oo, umw = Assu. . cuv> (1)
Alltl. .b.um):!:AZZJt. o ouvw® : (11)
t In this expression the repeated indices of the tensor 4,,.....,,, are written only once for brevity; thus
Ap,.qrs.“tuy..w=App....qqrrss ...... tluuvyseo. ww*
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In the former case we may contract the first pair of indices and write
Xij = Btt . U zr uv.f;p (5'7)

where B, ., is equal to each of the components (1) In the latter 1nstance we may write
the product as

u - (Alltt. . .uvv_Btt. .. avv) bilclt s duvj;j +Btl. . .uvvbz'rcrt e duv vj?
where Btt. couw A22tt. couvy A33tt. . uv

the last term being of the form (5-7). From a similar consideration of the other indices we
may infer that y;; can be regarded as a sum of products

) ‘Pij = bz'r("rs oo duv vj? ) (5'8)
with summation over repeated indices, together with terms
( ik Ckr ++ sl) (.flt s kul) reeee (llv oo mwl): (5.9)
in which one or more pairs of indices take the value unity. If we allow F;, @, R;; ... S;; to
represent products of the type (5-8), we see that (5-9) may be written as '
' By Quj-Ryy Sy, ' (510)

after all possible invariant factors Ry, ... S}, have been extracted. The foregoing analysis
is evidently unaffected if y; is multiplied by any scalar polynomial function of the kinematic
tensors which is form invariant under all transformations of the type (5:1). Corresponding
to (5-8) and (5:10), we therefore obtain in the expression for y;; terms of the form

F;0 and F,Q,;0, (5-11)
respectively, where in each case ® represents a polynomial function of the kinematic tensors

which is form invariant under the class of transformations (5-1). Remembering the sym-

metry property & = #// we may infer that #/ may be expressed as a sum in which the two
kinds of terms HB+PB)O and }(PQ,+B,Q,)0 (512)
occur. Under a tensor transformation
' . 060 967
i = 2 T _grs
ax" x5 ¢

to the convected co-ordinate system ¢ these yield the expressions ‘
| }(I +11) @, (513)
CiF,0,,0, (5-14)
(3(9" a6i . 96 601')

where Ci =A%+ 4Y) =5\ 3755t 5 5 )
and TII¥ is a product of the kinematic tensors s %

;; referred to the system ¢, this product
being obtained by transformation of the corresponding form (5-8) from the system X%

Further reduction of the expressions (5:13), (5-14) may be achieved by using the result
that any symmetric polynomial Q in the two symmetric 3 x 3 matrices E and A may be
expressed in the form

Q= ¢11+¢2E+¢3A+¢4E2+¢5A2+¢6(EA+AE)

165 (B2A -+ AE?) + §y(EA? - A’E) + o(E?A2 + AZE?),  (5:15)
66-2
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where I is the unit matrix and ¢, are scalar functions containing the elements of E and A
only as their scalar invariants. This result has been obtained by Rivlin (1955) by successive
applications of the Hamilton-Cayley theorem, and from the method of proof it follows that
the functions ¢, are necessarily polynomials in the elements of E and A. Moreover, since
each of these functions ¢, may be absorbed into ® without altering its character, the
expansion (5-15) gives an immediate reduction of (5-13), and makes it possible to infer that
the coefficients I1¥ + Il may be limited to the types

W, ¥, o, gyl el galtatnl,  gFnhed -+, (5:16)
Proa] +akdnl,  pErhafad -+t
The factors ® which occurin (5:13), (5:14) are polynomial functions of the scalar invariants
By = bycjy, ... dy, (5:17)
of the kinematic tensors, and of the functions
Py = byjci ... dy, (5-18)

which are form invariant under the class of transformations (5-1). The number of inde-
pendent forms (5:17) which can occur may be limited by using the result derived by Rivlin
(1955), that any polynomial scalar invariant function of the kinematic matrices E and A
may be expressed as a polynomial in the scalar invariants

trE, trA, trE2, trA? ttrE3, trA3 trEA, trE2A, trEA? trE2A2 (5-19)
where trE = traceE =i =¢;, etc. (5-20)
Furthermore, we observe that any product

Pll = blrcrs dtuj;tl

in the symmetric 3 x 3 matrices b;,¢; ...f; may be regarded as the leading term in the
elements of the symmetric 3 X 8 matrix P of which the general term is

P/\/l' = %(bkrcrs dtuj;t/t—l_bﬂ’c” o dm‘f"’\)’

and can therefore be reduced by means of (5:15). This reduction gives an expression for
P, as a linear form in the quantities

€115 115 €1rr1> a1,8,15 elrarl’} (5.21)

elr ers asl’ 61,.61,'.8 415 €1 ers Ay 45

with coefficients which are scalar polynomial functions of the invariants formed from
¢, 4;;, or equivalently, from 7, ai. The functions © in (5:13) and (5-14) may therefore be
expressed as polynomials in the combinations (5-19), (5-21) of the kinematic tensors.
To derive a manageable expression for 7% it is necessary to consider how many independent
terms of the type (5-14) can be obtained. This involves the decomposition of the coefficients
¥ P, Q,, into simpler forms. We may first, however, observe that the replacement of

Q1;, b,y successively by Kronecker deltas yields the expressions
f*jl Prl ®a Cﬁ le ®’ C ®i’{’ (5'22)

which may be regarded as particular cases of (5:14).
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6. REDUCTION OF THE EQUATIONS FOR TRANSVERSELY ISOTROPIC BODIES

A further simplification of the equations for the transversely isotropic case may be
achieved by making use of the Hamilton—Cayley theorem ,

AS—A2tr A+3A{(tr A)2—tr A%} —3I{(tr A)3—3tr A trA24+-2tr A%} =0,  (6°1)
for a 3 x 3 matrix A, the generalization
AEC+EAC+ACE+ECA+CAE +CEA
=(EC+CE) tr A+ (CA+AC)trE+(AE+EA) trC
+A(trEC—trE trC) +E(trCA—trCGtrA) + CG(tr AE—trA trE)
+I({trAtrEtrC—trAtrEC—trE trCA—trC tr AE+tr AEC+tr CEA), (6-2)
of this theorem obtained by Rivlin for three such matrices A, E, C and the formula
AEA = —A’E—EA?4 (AE+EA)tr A+ A2trE4+A{tr AE—tr A tr E}
+3E{trA2— (tr A)2}+ I{tr A2E—tr A tr AE— L tr E[tr A2— (tr A)?]}, (6-3)
derived by putting G = A in (6-2). In the subsequent analysis we shall denote by P(7)
any matrix polynomial, none of whose terms is of power greater than r in the products of

the matrices A, E and G, where the exact form of this polynomial is unimportant.t With
this convention, (6-1) to (6-3) may be rewritten

A =P(2), (6-1")
AEC+EAC+ACE+ECA+CAE+CEA =P(2), (6-2")
AEA = —-A’E—EA2+P(2), (6-3")
respectively. From (6-3") by replacing A by A? and making use of (6-1’) we have
A’EA? =P(4), (6-4)
and similarly, by pre-multiplying (6:3") by A
A’EA = —AEA2P(3). - (65)

We continue to allow E and A to denote the symmetric 3 x 3 matrices whose elements
are ¢,; and q,,, respectively, and observe that in the expression for 7% the quantities C¥,
obtained by giving A and x the values 1, 2 and 3, also form a symmetric 3 x 3 matrix which
we may therefore denote by G. With this notation, the coefficients of ® occurring in (5-14)

and (5-22) may be written
, Q.,C4F,, = [QCP],, }
C’i{})rl = [CP]yy, leCj:j, = [QC],, Clijl = [C]m
where P and Q are arbitrary products of the matrices A and E of the types
P = A“EAA=ES: | AwEf (6:7)
and the symbol [ ];; is employed to indicate that only the leading element P, of the final

product P is required. We may here observe that for any product I of the symmetric
matrices A, B, C, ..., X) Y, Z we have the symmetry property

[1],, = [ABC...XYZ],, = [ZYX ... CBA],,. (68)

T The coefficients in the polynomial P(r) are, in general, functions involving A, E and C as their scalar
invariants. '

(6-6)
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-

A preliminary simplification of the products (6-6) may be achieved by the method
employed by Rivlin in deriving the formula (5-15). For example, any polynomial of the
type (6-7) may be reduced to a sum of terms of similar type, but in which the indices «,, 5,
can only have the values 1 or 2, by making use of the Hamilton—-Cayley theorem (6-1").
In each term of the resulting expression, terms of equal power in the same matrix may be
combined by utilizing formulae of the type (6-3’) and (6-4), but in which E is replaced by
some combination of the matrices A, E and G. By this means, the matrix products occurring
in (6-6) may be reduced to a sum of terms, each of which consists of a product, in some order,
of some or all of the five factors E, E2, A, A2 and G, each factor occurring not more than once,
and which in addition is multiplied by scalar invariants formed from the matrices E, A
and G. We now consider the independent products of the matrices E, E2 A, A2and C Wthh
may occur, starting with those of lowest power. »

Remembering (6-8) we see that the coefficients of ® of the first, second and third powers
in E, A and G which may occur may be taken to be

[Clu, [GE]y, [CA]m} (69)
[CE?];;, [CA%,
[CEA],;, [CAE],, [ECA],. (6-10)
The last three are not independent, for, from (6-2") and (6-8) we have the relation
[CEA],, +[CAE],, +[ECA],, = [P(2)]1, (6:11)
so that in place of (6-10) we may take
[CEA],; and [CAE],, (6-12)

as independent coefficients. By replacing E and A by E? and A2, respectively, in (6-2')
and the derived relationship (6-11) we may infer that the products involving G, E2, A and
C, E, A% may be limited to the types

[CE?A],, [CAE?,, [CEAZ,, [CA’E],. (6:13)
- For products involving the factors G, E2, A% we have, in addition to the relation
[CE?A?],, + [CAZE?];, +[E*CA?],, = [P(4)], (6:14)

éorresponding to (6+11), a further equation derived from alternative expressions for the
product EAECA. For reductions of the type (6-3") yield

EAECA — (EAE)CA — — E2ACA —AE2CA +P(4)
— E2A’C -+ 2E2CA2+ A?E?C+ P(4),

and EAECA = E[A(EC)A] = —EA’EC—E?CA%4-P(4)
= A?E2C+E?A2C—E2CA%+-P(4),
which imply that E2CA? =P(4). (6-15)

Remembering (6:14) we see that it is possible to choose either
[CE?A?];, or [CA2E?],,

as a single independent coefficient involving C, A% and E2.
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Products of the factors G, A, A2 and E can evidently occur as
(1) [ACA’E],;, [ACGEA?],;, [GAEA?],, (616)

(ii) the three products obtained from (i) by interchanging A and A? and connected
with them by formulae of the type (6-5), and

(iii) six further expressions obtained from (i) and (ii) by reversing the order of the
factors, and equivalent to them by virtue of the symmetry property (6-8). Alternative
expansions of the product ACAEA using (6-3") and (6-5) now yield

(ACA)EA = —A2CEA —CAZEA | P(4) — ACEA? + CAEA? - P(4),
A(CAE)A = — A’CAE —CAEA?+P(4) = ACA’E —CAEA2+P(4),
AC(AEA) = —ACEA2— ACAZE | P(4),

and by addition of these three expressions we may infer that ACAEA can be expressed
entirely in terms of products of the fourth and lower powers in E, A and C. It then follows

that ACEA? = —CAEA?{ P(4), ACA’E — CAEA?+P(4),
and therefore that all coefficients involving the factors G, A, A? and E may be expressed

in terms of [CAEAZ],,, (6-17)

and products involving lower powers of G, A and E. By a similar procedure, with A and E
interchanged we obtain the further coefficient

[CEAE?],,. (6:18)

The extension (6-2’) of the Hamilton—Cayley theorem in the present instance yields no
further independent relations between the fifth-power products.
Coeflicients which may be formed from the factors C, A, A2 and E? take the forms

[ACA’E?],,, [ACE?A?%],, [CAE’A?,, (619)

corresponding to (6-16), together with expressions related to them either by relations of
the type (6:5) or by the symmetry property (6-8). By successive application of (6:3') to
the product AECAEA we obtain

A(EC)AEA = —A?ECEA —ECAZEA + P(5)
— A2E2CA + A2CE?A +CA?E?A 1 P(5)
— A’E2CA—ACE?A?—CAE?A2+ P(5)

=@, (say),
and similarly l

A(ECAE)A = A?E2CA—AGA’E?+ CAE’A?4-P(5) = &,,
AEC(AEA) = —2A?E2CA + ACA2E2+ ACE?A?+ P(5) — @,
AE(CA)EA = AE2CA + ACA?E?+ ACE?A? + P(5) — @,

alternative expressions for ®, becoming identical, as far as terms of the sixth power are
concerned with @, and ®,. Since ®; = @ it follows that A?’E2CA can be expressed entirely
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in terms of products of the fifth and lower powers. A corresponding result follows for
AECAEA from the expression for ®,+®,+®,. It is then seen without difficulty that

ACE?A? = — CAE?A2+ P(5),
ACAZE? = CAE?A?1P(5).

A similar consideration of the product AEACAE shows that ACAZE? can be expressed
entirely in terms of products of the fifth and lower powers, and yields the additional relations

E2A2CA — —A?E?CA + P(5) = P(5),
A?E?AC = — A?E?CA +P(5) = P(5).

From these, and analogous results obtained from the expansions for EACAEA and
AEACEA it follows that all products involving the factors A, A2, E? and C may be expressed
in terms of those of the fifth and lower powers in E, A and C. A similar result applies for
products of the factors A% E, E2 and C.

To reduce the products of all five factors E, E2, A, A2 and C we first observe that all
such expressions either contain one of the factors E or A at the beginning or at the end, or
else may be related to products of this type by making use of (6-5). Each of the combinations
which need to be considered may therefore be regarded as a product of the factors A, A2,
E? and C premultiplied or post-multiplied by E, or as a product of the factors A2, E, E2
and G premultiplied or post-multiplied by A. Since each of these products of the sixth power
in the matrices A, E and G can be expressed in terms of those of a lower power, without
making use of the symmetry condition (6-8), it follows that each product of all five factors
can be similarly reduced.

By successive application of the formulae (6:1) to (6:5) we have thus been able to reduce
any coeflicient of the type (6-6) to a sum of terms of two kinds. Each term of the first kind
is a product of one of the quantities

[Clis, [CE],;,  [CAly,  [CGE?y, [CA?]yy,
[CEA],;, [CAE],, [CE’A],, [CAE?,, [CEA?, (6-20)
[CA’E],;, [CE?A?],, [CA’E?],, [CEAE?,, [CAEA?Z,,,

with an expression which involves only the scalar invariants of E and A and may therefore
be absorbed into the multiplying function ® introduced in§ 5. Each term of the second type
consists of a scalar invariant product of the matrices C, E and A, involving C linearly,
multiplied by a function of the matrices E and A which is invariant in form under trans-
formations of the type (5-1).

This latter function may again be absorbed into ® and since the factor involving C is a
polynomial in the matrices A, E, G it may be written as a sum of terms of the type

tr (PCQ),

where P, Q are polynomials in the matrices E and A, together with coefficients which are
scalar invariant functions of E and A. Remembering the definition of C, it follows that this
second kind of term is equivalent to the form (5-13) which has already been considered,
and from which there follows the set of coeflicients (5-16).
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The foregoing reductions thus lead to the conclusion that the coefficients of ® which
occur in (5-13), (5-14) can be expressed as linear combinations of the quantities (5-16),
(6-20), respectively. Collecting these results into one formula, we obtain for the stress
tensor

19 = Y90, +1 O, + oY O+ 17 O + e ®5+ (n%ed],+ o) Og
+ (%o +-o*in]) O 4 (n*akod + afain]) Og -+ (1 o od, 4 a* ol s,) O+ CH W
+Cide Vot a, Vs te, 0 Vita, a0 Ys+e,a,0 Vot+a,e,V+e,640, Vg
+a,seq00 Vo te, a4, Vo t+a,ae0 W1+ 00,0,V +a,a,6,6, Vs
+ 550518001 W1a T, €401, 0, s}y : (6-21)

where O, (r =1 to 9) and ¥, (r = 1 to 15) are scalar invariant functions of the quantities
(5-19), (5-21), these functions being polynomials in their arguments. We notice that this
formula contains two groups of terms. In the first group, involving the functions ®, the
coefficients are isotropic in character; in the second group, the coefficients are characteristic
of the transversely isotropic case. By virtue of (6-14) and (6-15) one or other of the terms
involving ¥,, ¥';; may be omitted without loss of generality.

7. ISOTROPIC BODIES

If the second group of terms, involving the functions ¥, is omitted from (6-21) and the
functions 0, in the remaining terms allowed to become functions of the invariants (5-19)
alone, the resulting relationship defines an isotropic material. This result differs from the
formulae employed by other workers (for example, Green 1956 4) in that the contravariant
kinematic tensors are derived from the covariant forms by using the metric tensor y¥ to
raise indices in place of the more usual I'¥. The difference arises from the procedure em-
ployed in the present paper of referring the mechanical properties of the material to an
initial configuration; in other work where plastic and fluid properties are being considered
it is the current configuration which is usually of primary importance. The equations
derived in this latter case must evidently be equivalent to the forms obtained from a con-
sideration of isotropic properties in some initial configuration, and this equivalence is
readily demonstrated.

Consider the invariants :
Jh=1 Jy=15n5 Iy =1inint, }

I= 04207 = 7T = | Tl "y
Between these, we may establish by a straightforward calculation the relation
8J; = 24 |7} | +12J, Jy—4J}
= 3([—1—-2J,—2J}{+2J,) +12J,J,—4J3. (7-2)
By differentiating this relation with respect to 7, and substituting the results
%ﬂ‘% = yik, zﬂJ,k ik, g%c = 3k, 5% = 2T, (7-3)
we obtain IT* = (1+2J, —2J,+2J3}) y*—2(1 +2J,) nik 4 dgkyri. (7-4)

This is an expression for I'* in terms of y*, contravariant and mixed tensors derived from the
covariant form by raising indices with y* and invariants formed from these quantities.

67 VoL. 250. A.
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We note further than 7 is equivalent to the non-vanishing quantity (p,/p)2. Any isotropic
form in which the coefficients and invariants are formed from mixed and contravariant
components of the kinematic tensors, which are derived from the covariant form by
raising indices with the metric tensor I'*, may thus be reduced to a corresponding form in
which the initial metric tensor y#* performs this function. To complete the reduction, it
may be necessary to simplify the coefficients of the latter form by making use of (5:15).
The scalar invariant functions, corresponding to ), in (6-21),which occur in the two forms
are not, in general, identical.

8. CURVILINEAR AEOLOTROPY

The preceding results may be generalized without difficulty to include curvilinearly
aeolotropic bodies. In the rectilinear case, aeolotropic properties are defined by means of
the convected system x' which coincides at the initial time ¢ = 0 with the Cartesian system
X in the undeformed body. This system is replaced, for curvilinearly aeolotropic bodies
by a convected system 1§ which coincides at time ¢ = 0 with a suitably chosen curvilinear
system & in the undeformed body at rest; for simplicity, we confine attention to the case
where this latter system is orthogonal, so that

Oy =1/ Dyy), Dy =0y =0 (). (81)
In the case of ideally elastic bodies, curvilinearly aeolotropic properties are defined by
specifying that the strain energy function W shall be a function, apart from physical
constants independent of (V% or ¢, only of the physical components of strain Vg, defined by
(0
Wi
Oy = m = Ory- \ (8-2)

These latter components are introduced from the consideration that an element of length
ds; lying in the direction of a M¢’ co-ordinate curve in the undeformed body is given by

ds; = /(Vy;) dD¢ (i not summed), (83)
so that the formula (2-1) for ds?—ds? may be written
ds?—ds§ = 20p; ds;ds;. (8:4)
It then follows without difficulty (Adkins 1955) that the quantities
D1y = O {0y Vy3 - (44 not summed) (8:5)

are also functions, apart from physical constants, of the components 7.

A natural generalization of this result to materials in which the stress depends upon rates
of deformation, is obtained by postulating that the components 7 shall be functions, apart
from physical constants which are independent of ¢ and ¢, only of suitably defined physical
components Wy, Vag;), D >) of the kinematic ténsors Opi» Vaj, Vo referred to the co-
ordinate system ¢ in the undeformed body at rest at time t— 0. The required physical
components Vg, Doff) may be derived from (8-4) by differentiation; for we have

% (ds?—ds§) = 2Wa; dDFEADET = 20y ds;ds;,

D 7 (ds2 ds§) = 20 dFEdDEI = 20 ds, ds;,
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e D(l)”(i') Mg,
ivi Wy o — 0 _ y
giving %Gj) D¢ J( @y, 0y ”
o _ D) D)

D De (W)
By analogy with the elastic case, we may therefore define a curvilinearly aeolotropic

material in which the mechanical properties depend upon the strain and its first » time
derivatives by the relation

(I)T(rs) = %{ﬁrs) +ﬁsr)}’ (8.7)
where .ﬁrs) E‘ﬁrs)((l)”(ij)) (1)“0;1)) (l)“gzi)) (ﬁ =2, 3) ceey n) (8°8)

are functions of the physical components indicated, which are such that

ﬂrs)/ «/ ((1)7"(1)4},”)

transform as the components of a contravariant tensor with respect to systems of convected
co-ordinates. We then have

(l)Trs = %{ﬁrs) +ﬁsr)}/N/((l)7rr(l)yss) ) (8.9)
and by a tensor transformation to the convected system &,
. 00 00 .
™ =g gog T = CWaSeos (8-10)
h ij :l{Aij +A"'} and A#¥ =_a.0_z__‘_?gj_ N/((1) 1) 811
where & = 2 Agy T Al ) = 5mgr ggs Yor D) - (8:11)

Symmetry properties may be introduced by analogy with the rectilinear case. Thus a
material is defined as being orthotropic with respect to the curvilinear system V¢ if its
mechanical properties at any point, referred to the ®fi-curves (or the f-curves) in the
undeformed body at rest, are symmetrical about the tangent planes to the surfaces
(M@ = constant through that point. This implies that the quantities M7,y when expressed
as functions of the physical components My, Vay,, Vo) remain invariant in form under
all transformations of co-ordinates in the undeformed body of the type

((l)ﬂl, (1)02, (1)03) — ( + g% l, + 0*2, j: 0*3) .

Similarly, transverse isotropy with respect to the ()f-direction, implies symmetry about
the tangent plane and the normal at each point to the surfaces W' = constant in the un-
deformed body, that is, form invariance of the functions M7, under all transformations

01 — j:ﬁ*l, P — (1)005(0*2, 0*3) (“ — 2, 3),

of co-ordinates in the initial state.

If we restrict the functions f,,) to be polynomial functions of the kinematic quantities
Wy Vo), the reductions of§§ 4 and 6 may be carried through without modification, apart
from the replacement of #, ¢;, a; and A4} by M1, Oy, Doy and Af, respectively. In
particular, we may observe that the formulae (4-14) to (4-18) and (6-21) require only these
modifications. It may, however, be noticed, that by virtue of relations of the type

Wiy = Oty O Onaay oo O Oy = Ot Oy .. Wyl Wy
67-2
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which apply irrespective of whether or not summation is carried out over repeated indices,
the invariants appropriate to the orthotropic case may be derived from (4:14) by replacing
¢, a; by Wi, Wk respectively. A similar remark applies to the invariants (5-21) for trans-
versely isotropic bOdlCS, and the functions 0,, @} which occur in (4-17), (4-18) may appro-
priately be written in the mixed form @, ®9?, respectively.

For curvilinearly aeolotropic bodies of the type considered in the present section the
dissipation function @ may be expressed as a function, apart from physical constants,
entirely in terms of the kinematic quantities My, Moy, Do),

9. CONSTRAINTS

In the theory of large elastic deformations, the stress-strain relations for materials
subject to constraints may be established from variational principles and based on the
concept of a strain-energy function. When time derivatives of the strain enter into the
constitutive equations it is not immediately obvious how such considerations can be
applied, although the procedure of adding an arbitrary isotropic tensor to the stress to
account for the existence of incompressibility can be justified without difficulty. A more
general discussion based upon the expression for the stress power is possible if we postulate
the existence of geometrical constraints, which are such that throughout the motion they
merely restrict the possible configurations which are available to the body without them-
selves doing any work. This implies that any terms introduced into the expressions for the
stress components to account for these constraints must be such that they do not affect the
rate of working at any instant.

Following the method employed by Ericksen & Rivlin (1954) and by the author (1956)
for elastic materials, we assume that the constraints can be expressed by means of functional

relations @) =0 (m=1,2,3,...) (9-1)

between the components of strain ®y;; referred to a convected co-ordinate system @ which
may, or may not coincide with either of the co-ordinate systems ¢, V¢ previously employed.
As in the theory of elasticity, the existence of six independent constraints, i.e. six function-
ally independent relations between the six quantities @y,; would imply that these could
only exist for isolated values of their arguments, and this would limit the motions to those
which characterize a rigid body. We therefore impose the condition m < 6. By differentiating
(9-1) we obtain the conditions

Dfn _ U D1y _ U g

Dt ~ d@y,; Dt 3%y, "‘u
O, 00 86°
a(z),, 7oF g@gi %rs

0 (m<e6),

or alternatively =0 (m<6). (9-2)

Let 74/ denote an expression of the type (4-18) or (6-21), or any of the analogous formulae
which may be derived by the procedures of §§ 7 and 8, appropriate to a material for which
constraints are absent. The stress power, or dissipation function ®, which represents the
rate at which internal mechanical work is being done per unit volume of the configuration
at the current time ¢, may then be written as '

D =170,
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If, owing to the constraint represented by f,(?y,,) = 0 the stresses are increased to the
extent of an arbitrary symmetric tensor p7°* we have

Q= {r* 15 s = Ty
or Pa,, =0, (9-3)

by virtue of the assumption that the stress power is to remain unaltered. Remembering
the symmetry property of «,, and pi* we may derive from (9-2) and (9-3) the relation

o (0 30 a0 e of
{ﬁ r—z0 (3(2)@' 206 T o0 3(2),91') 9y,

¢, being an arbitrary scalar function of ¢ and ¢. It is evident that #7°* must be such that by
a suitable choice of ¢, all of the coefficients of «,, may be made to vanish simultaneously.
For, if not, it would be possible to choose ¢, so that (9-4) contains non-zero terms, but has
at least one vanishing coefficient which corresponds to a non-zero coefficient of (9-2). This
would imply an independent linear relation between the components «,, additional to
that derived from the constraint condition f;(®7,,) = 0. We may therefore take

s 90 36 a6 96°\ 4y
= %91(3(2) Gigog T 3op a(z>,9i) a(2>,;ij°

Ja, =0, (9-4)

A similar argument applied to each of the constraint conditions (9-2) yields, for the stress
tensor, the formula '

n a6 d6s a6 a6s\ df,
Wgrs — g5 -4 mz= Im (a(z)ﬁi o5 T 30 mz)ai) a({;]ij (n<6), (9-5)

Incompressible materials provide an obvious illustration of this result. For if there are
no volume changes during the motion, we have at each instant the condition

| 05+2@5 | = | 95 +207| = 1,
which, with (9-5) gives 7 =144 q, 'Y, (9-6)

consistent with the theory of elasticity and the relations employed by other workers.
If, throughout the motion, lines following the @¢ co-ordinate curves remain unchanged
in length we have the single constraint condition

Si(@g;)=@p, = 0 (i not summed),

and this, with (9-5) yields

agr s .
778 = T?Hlmw (¢ not summed). (9-7)

Such conditions may be simulated by the introduction of a system of thin, flexible, in-
extensible cords along the @@-curves, and a direct calculation of the stress-deformation
relations for a composite material of this kind, along the lines followed by the author (1956)
for reinforced elastic sheets, serves to verify (9-7).

In place of (9-1) it is evidently possible to postulate the existence of non-integrable
relations of the form Fi®g, =0 (Fi=Fj),
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in which F¥, are arbitrary tensor functions of the strain components @y,,. The resulting
analysis, leading to the equation

rs rs n agr aos a0 dbs ij
77 = 75 %mgl Im (a(Z)gz‘ 905 T g a@wz‘) Fa

may be compared with the theory of non-holonomic constraints in classical rigid dynamics,
but its physical significance in the present instance is not immediately obvious.

10. TRANSFORMATION TO FIXED CO-ORDINATE SYSTEM

The preceding analysis has been concerned with materials for which the strain tensor
enters explicitly into the constitutive equations and for which there is therefore a preferred
initial configuration. The situation in a given element of the body during its motion is then
often of primary interest rather than that at a fixed point in space. For this reason, and also
to simplify the analysis, convected co-ordinate systems have been used throughout. If,
however, it is required to refer the motion to a co-ordinate system ' which is fixed in space,
the appropriate fixed components of the kinematic and mechanical tensors must be
employed. The formation of such components has been discussed by Oldroyd‘(lg 50), who
has shown that if an unwelghted tensor ;34 has ﬁxed components 4:;i -, the tensor

+Umbk +zv b..z...__zlvz bk ..., (10.1)

where 0/0¢ denotes partial differentiation with respect to ¢ holding the fixed co-ordinates
¥ constant and ¢’ is the contravariant velocity vector in the co-ordinate system y'. The
comma now signifies covariant differentiation with respect to the co-ordinates ' and the
fixed components G;(y"), G¥(y") of the metric tensors I';(07,¢), 'V (07, ¢) and X(X') denotes
a sum of all similar terms, one for each covariant (contravariant) suffix.

To derive expressions for the stress components referred to the fixed curvilinear reference
frame i, we choose this system so that at the instant ¢ under consideration the convected
system ¢ coincides with it. We denote by 7%, g;;, g9, Gw GY, E;, A;;, A7 the fixed components,
referred to the co-ordinates ', of the tensors 77, y,;, Y, 1;, I'Y, n,5, %> « respectively. The
metric tensor components Lj;(0r,t), 1'% (07, t) are therefore replaced, in the system i, by the
fixed components G;;(y"), G¥(y") which, with the present choice of co-ordinate systems,
are equal to them; a s1m11ar remark applies to the tensors g;;, g%, 7% and E;;. From (10-1),

we obtain, for the kinematic tensors

EZJ = %(Gz‘jp_gij)a
Az‘j = %(Ui,j‘l‘vj,i)a
)

(10-2)
AT+D — %Z-{—UMA(-’)m‘FU,miA%"{'vﬁ 4p (r=1,2,..; 49 = 4;).

2] i,
A similar procedure may be employed to derive fixed components of the mechanical

and kinematic tensors ¥, @y, @i, ... referred to the other convected co-ordinate systems
@¢i. In each case, the corresponding ﬁxed system @y is chosen to coincide, at current time
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t, with the convected system under consideration. Alternatively, these components may be
derived by tensor transformations. For example

04, = 29" %Y
P4y = G g A

Corresponding to the physical quantities V), Do), defined by (8-2) and (8:6) we have
OE..

WF, —
()]
v ((1)gii(1)gjj)’
M4,
and 1) A?")‘) S B—
(W Vg)’

respectively.

To refer the constitutive equations to the fixed reference frame ' all kinematic and
mechanical tensors which occur in the corresponding equation referred to the convected
system ¢ are replaced by the appropriate fixed components. In addition, the quantities
Al CY, AP, C¥, defined in §§4, 5 and 8 are replaced by the quantities

. 0yt dyd y g g
DAY, = a_% a% -, (NCH = {04+ 1044},
y dyt dyi . " .
and DAy = a(gy_r 'ad’/)‘ys / J(Pg,Vg), DCEy = H{OAEy+DAf),

respectively, Y? being the fixed co-ordinate system chosen so that at the current time ¢ the
convected system #’ coincides with it.

This work forms part of a programme of research undertaken by the Board of the British
Rubber Producers’ Research Association. The author wishes to thank Professor A. E. Green
for helpful discussions and for commenting on an earlier draft of this paper.
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